Crack Televes Cast 6061
Al alloy 6061, which exhibits excellent casting properties and reasonable strength, was used as the base alloy. This is apopular Alalloy with good strength and is suitable for the mass production of lightweight metal castings. The material can be either sand cast or die cast. The chemical composition of the Al alloy 6061 is given in Table 1. This episode of CRACKCast covers Rosen’s Chapter 73, Asthma. Not just for kids! This disease process is satisfying to treat when patients respond well to therapy, but recognition of critically-ill patients is an important first step in management. This figure shows the effects of four different alloy additions on the crack sensitivity of aluminum. Fig 2 Here are two GTAW (TIG) welds side by side made on a 6061-T6 base plate. The top weld was deposited with no filler alloy, and then subjected to liquid penetrant testing.
Abstract
A well-consolidated composite of Al alloy 6061 reinforced with 4, 8 and 12 wt% garnet was prepared by a liquid metallurgy technique, the composite was heat treated for different ageing durations (T6 treatment), and its mechanical properties were determined by destructive testing. The results of the study indicated that, as the garnet particle content in the composites increased, there were marked increases in the ultimate tensile strength, compressive strength and hardness but there was a decrease in the ductility. Super best dk. There was an improvement in the tensile strength, compressive strength, and hardness with ageing due to precipitation. Precipitation in Al alloy 6061, with and without garnet particulate reinforcement, was studied using transmission electron microscopy. The fracture behaviour of the composites was altered significantly by the presence of garnet particles and the crack propagation through the matrix, and the reinforcing particle clusters resulted in final fracture.
Gary A Jones
1. | Sharma, S. C., Girish, B. M., Kamath, R., Satish, B. M. J. Mater. Engng Performance, 1999, 8 (3), 309. Google Scholar Crossref ISI |
2. | Sharma, S. C. Metall. Mater. Trans. A, 2000, 31, 773–780. Google Scholar Crossref ISI |
3. | Dutta, I., Bourell, D. L. Mater. Sci. Engng, 1989, A112, 67. Google Scholar |
4. | Christman, T., Suresh, S. Acta Metall., 1988, 36, 1691. Google Scholar Crossref ISI |
5. | Nieh, T. G., Karlak, R. F. Scripta Metall., 1984, 18, 25. Google Scholar Crossref ISI |
6. | Papazian, J. M. Metall. Trans. A, 1988, 19, 2945–2953. Google Scholar Crossref |
7. | Chawla, K. K., Esmaeili, A. H., Datye, A. K., Vasudevan, A. K. Scripta Metall., 1991, 25, 1315. Google Scholar Crossref ISI |
8. | Suresh, S., Christman, T., Luxton, S. D. J. Mater. Sci., 1988, 23, 1599. Google Scholar |
9. | Sharma, S. C., Girish, B. M., Kamath, R., Satish, B. M. J. Mater. Engng Performance, 1999, 8, 309. Google Scholar Crossref ISI |
10. | Ustundag, E., Subramanian, R., Dieckmann, R., Sass, S. L. Acta Metall. Mater., 1994, 43, 383. Google Scholar ISI |
11. | Wang, N., Wang, Z., Weatherly, G. C. Metall. Trans. A, 1992, 23, 1423. Google Scholar Crossref |
12. | Samuel, A. M., Samuel, F. H. J. Mater. Sci., 1994, 29, 3591. Google Scholar Crossref ISI |
13. | Thomas, G. J. Inst. Metals, 1961, 90 (2), 57. Google Scholar |
14. | Panseri, C., Federight, T. J. Inst. Metals, 1966, 94 (3), 99. Google Scholar |
15. | Callister, W. D. Material Science and Engineering—An Introduction, 2nd edition, 1991, p. 536 (John Wiley, New York). Google Scholar |
16. | McDaniels, D. L. Metall. Trans. A, 1995, 16, 1105. Google Scholar Crossref |
17. | Hosking, F. M., Portillo, F. F., Wunderlin, R., Meharabian, R. J. Mater. Sci., 1982, 17, 447. Google Scholar Crossref ISI |
18. | Mummery, P. M., Derby, B., Scruby, C. B. Acta Metall., 1993, 41, 1431. Google Scholar Crossref ISI |
19. | Song, Y., Bakes, T. N. Mater. Sci. Technol., 1994, 10, 406. Google Scholar Crossref ISI |
20. | Pai, B. C., Ray, S., Prabhakar, K. V., Rohatgi, P. K. Mater. Sci. Engng, 1976, 24, 31. Google Scholar Crossref ISI |
21. | Sato, A., Meharabian, R. Metall. Trans. B, 1976, 7, 44. Google Scholar Crossref |
22. | Seah, K. H. W., Sharma, S. C., Rao, P. R., Girish, B. M. Mater. Des., 1995, 16, 277. Google Scholar Crossref ISI |
23. | Dutt, I., Allan, S. M., Hafley, J. L. Metall. Trans. A, 1991, 22, 2553. Google Scholar Crossref |
24. | Gervais, E., Barnhurst, R. J., Loong, C. A. J. Metals, 1985, 37, 43. Google Scholar |
25. | Song, Y., Baker, T. N. Mater. Sci. Technol., 1994, 10, 406. Google Scholar Crossref ISI |
26. | Kiser, M. T., Zok, F. W., Wilkinson, D. S. Acta Mater., 1994, 44 (9), 3465. Google Scholar Crossref ISI |
27. | Fired, C. M., Horsfall, I., Luxton, S. D., Young, R. J. Report, Materials Technology Group, Royal Military College of Science, Swindon, Wiltshire, 1992. Google Scholar |
28. | Christman, T., Needleman, A., Nutt, S., Suresh, S. Mater. Sci. Engng, 1989, A107, 49. Google Scholar Crossref ISI |
29. | McDanels, D. L. Metall. Trans. A, 1985, 16, 1105. Google Scholar Crossref |
30. | Llorca, J., Suresh, S., Needleman, A. Metall. Trans. A, 1992, 23, 919. Google Scholar Crossref |
31. | Kamat, S. V., Bath, J. P., Mehrabian, R. Acta Metall., 1989, 37, 2395. Google Scholar Crossref ISI |
32. | Whitehouse, A. F., Clyne, T. W. Acta Metall., 1993, 41, 1701. Google Scholar Crossref ISI |
33. | Arsenault, R. J., Shi, N., Feng, C. R., Wang, L. Mater. Sci. Engng, 1991, A131, 55. Google Scholar Crossref ISI |
34. | Vaidya, R. U., Chawla, K. K. Composites Sci. Technol., 1994, 50, 13. Google Scholar Crossref ISI |